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Abstract. Nonunitary representations of a novel realization of the su(2) algebra recently
introduced for the Dirac relativistic hydrogen atom are found to be actually unitary representations
of a related su(1, 1) algebra.

Dynamical symmetry methods have been widely used in various fields of physics [1] and their
power is especially demonstrated in the nonrelativistic and relativistic Coulomb problems. In
recent work by R P Martínez-y-Romero, A L Salas-Brito and J Saldaña-Vega [2, 3], a novel
realization of the classic su(2) algebra was introduced for the Dirac hydrogen problem and non-
unitary representations were used to explain the bound-state energy spectrum. Although non-
unitary representations could be important in certain dynamical symmetry problems related to
periodic potentials [4], a careful analysis shows that the representations in [2, 3] are actually
unitary with respect to a su(1, 1) realization.

Let us first write down the realization of the su(2) algebra in [2, 3]:

�± = e±iξ

(
∂

∂x
∓ ex ∓ i

∂

∂ξ
+

1

2

)
(1)

�3 = −i
∂

∂ξ
(2)

where x is the transformed radial variable and ξ is essentially an extra phase. For details on
how this is related to the Dirac hydrogen Hamiltonian, please refer to [2, 3]. The operators
satisfy the usual su(2) commutation relations:

[�3, �±] = ±�±, [�+, �−] = 2�3. (3)

The authors of [2, 3] proved that, for a certain scalar product,

�
†
3 = �3, �

†
± = −�∓ (4)

so that the realization of the algebra is not Hermitian. That is why non-unitary representations
of su(2) were introduced.
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However, we can change the realization a little bit to produce unitary representations of a
su(1, 1) algebra. All we need to do is to change �− to −�−, so that we have

�± = e±iξ

(
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− ex − i

∂

∂ξ
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2

)
(5)

�3 = −i
∂

∂ξ
(6)

with commutation relations

[�3, �±] = ±�±, [�+, �−] = −2�3. (7)

This is obviously a su(1, 1) algebra and it is similar to the su(1, 1) realization for the Morse
potential in [5] except for a sign change in x. Besides, �†

± = �∓, so the realization is Hermitian
and the representations should be unitary with respect to the su(1, 1) algebra.

Let us recall the classification of unitary irreducible representations of su(1, 1) [6],where
k(k + 1) is the eigenvalue of the Casimir operator and m is the eigenvalue of the operator �3:

• The principal series k = − 1
2 + iρ, ρ > 0, m = 0, ±1, . . . or m = ± 1

2 , ± 3
2 , . . ..

• The complementary series − 1
2 < k < 0, m = 0, ±1, . . ..

• The discrete series D+
k , where k is a negative integer or half-integer and m = −k, −k +

1, . . ..
• The discrete series D−

k , where k is a negative integer or half-integer and m = k, k−1, . . ..

For our realization of su(1, 1), the Casimir is

�2 = − �+�− + �2
3 − �3

= ∂2

∂x2
− e2x − 2iex ∂

∂ξ
− 1

4
. (8)

According to [2, 3], the eigenvalue of the Casimir operator should be

ω = j (j + 1) − Z2e4 (9)

where j is the total angular momentum and Z is the atomic number. ω is positive for at least
Z = 1, 2, · · · , up to 118, because j � 1

2 . The eigenvalue of �3 should be related to the energy
of a bound state by [2, 3]

µ = Ze2E√
m2

e − E2
+

1

2
(10)

which obviously need not to be restricted to integer values. (Note that the formula for µ is
misprinted in [3], where the last term is 1 instead of 1

2 .) This observation reminds us to use
projective unitary representations of su(1, 1) as in [5]. The classification is listed below [7]:

• The principal series k = − 1
2 + iρ, ρ > 0, 0 � m0 < 1, m = m0 ± n, n = 0, 1, 2, . . ..

• The complementary series − 1
2 < k < 0, 0 � m0 < 1, m0(m0 − 1) > k(k + 1) �

− 1
4 , m = m0 ± n, n = 0, 1, . . ..

• The discrete series D+
k , k < 0 and m = −k, −k + 1, . . ..

• The discrete series D−
k , k < 0 and m = k, k − 1, . . ..

So we should use the projective discrete series D+
k with

k = −
√

ω + 1
4 − 1

2 = −
√

(j + 1
2 )2 − Z2e4 − 1

2 (11)

and µ = −k + n, n = 0, 1, . . .. This will give us the correct energy spectrum:

E = me√
1 + Z2e4/(µ − 1

2 )2
. (12)
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To conclude, we would like to remark that it is already known that the harmonic oscillator,
Coulomb and Morse potentials are equivalent under certain transformations , and that they are
supersymmetric shape-invariant potentials [8]. So it is not surprising that the Morse potential
can be used in the Coulomb problem and that the system has hidden supersymmetric properties
as remarked in [2,3]. All these potentials are related to su(1, 1) algebra [5,9]. Since su(1, 1)

and su(2) are both real forms of the complex Lie algebra sl(2), unitary representations of
su(1, 1) will always be non-unitary representations of su(2). However, we prefer to regard the
representations as unitary with respect to su(1, 1) because we believe unitarity is fundamental
to quantum physics. The authors of [3] mentioned that the algebra of the Lorenz group is not
necessarily unitary in physical applications. But underlying the non-unitary representations of
the Lorenz group are actually the unitary representations of the encompassing Poincaré group
in relativistic quantum physics [10]. As to the appearance of non-unitary representations of
su(1, 1) in the band structure problem [4], since the origin is unclear, it is still an open question
deserving more research.
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